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Abstract. The standard way to reduce a flow to a time-discrete dynamical system is by the
technique of the Poincaré surface of section. We discuss the relationship between Poincaré maps
obtained from different surfaces of section and give some considerations for practical application
for this method.

1. Introduction

One century ago Poincaré introduced the concept of time-discrete dynamical systems in
his study of two-dimensional autonomous differential equations [1]. Such construction of
Poincaŕe maps has become one of the very basic tools implemented in nonlinear dynamics
and is nowadays contained in every textbook on nonlinear dynamics (see, for example, [2]).
The method is, to a great extent, used in many applications, for example, at the heart of
data analysis [3], control in nonlinear systems [4], and numerical simulations, although one
should stress that from the principal point of view the use of Poincaré maps can be frequently
avoided. Since the construction of Poincaré maps via a suitable surface of section reduces the
dimension of phase space by one, the approach is particularly useful for visualization of three-
dimensional complex dynamics. Further dimension reduction can be achieved by a projection
along the local stable manifold. For ‘nice’ (i.e. hyperbolic) dynamical systems such concepts
can be formulated, even rigorously, if one considers more complicated topological spaces [5].
Hence, on the one hand Poincaré maps are useful tools in applications and, on the other hand,
the concept has a sound mathematical background. For these reasons the understanding of
Poincaŕe maps is at the centre of interest of nonlinear dynamics. To our surprise, we have not
been able to find a general and systematic approach in the literature. To our best knowledge,
rigorous approaches either considerlocal Poincaŕe maps which are constructed in the vicinity
of a periodic solution of the flow system orglobal maps may be introduced for periodically
driven non-autonomous systems such as, for example, kicked rotators. In the latter case the
stroboscopic view corresponds to a Poincaré surface of section in the extended phase space at a
fixed phase value of the periodic driving term. In numerical investigations, one uses empirical
global Poincaŕe maps for chaotic flows. In the first part of this paper we investigate properties
of such global maps, whereas in the second part we give some guidelines for practical purposes
and illustrate the properties through experimental data.
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Figure 1. Diagrammatic view of a trajectory in phase space
and two different Poincaré cross sections.

Define a time-continuous dynamical system through a first-order differential equation
ż = f (z) in some phase space0 ⊂ Rd , wheref fulfils a Lipschitz condition. The initial
value problem thus has a unique solution, which is at least smooth and, through uniqueness,
can be followed in both time directions. The Poincaré map is introduced with respect to a
given oriented surface of section of co-dimension one inRd . The action of the map on a
point within this surface is defined by considering the trajectory emerging from this point,
i.e. of the solution of the initial value problem, and determining the next intersection with
the surfacein the predefined orientation. On the one hand, the initial point belongs to the
range of definition of the Poincaré map only, if the trajectory emerging from it has the same
orientation. Hence, Poincaré maps are usually not defined on the whole cross section, but
only on a subset. On the other hand, the construction of the Poincaré map requires that the
trajectory returns with a certain orientation to the surface of section under consideration. Such
a property is guaranteed, e.g. in the vicinity of limit cycles where the recurrence follows from
standard continuity arguments [5]. In this sense the maps are defined locally. One has to
impose additional conditions from the global point of view. Since one is usually interested in
the dynamics in the long-time limit, one might restrict the discussion to a suitableω-limit set,
i.e. the set of all points where a trajectory accumulates. In order to ensure that the Poincaré
map reflects the complete structure of the flow one has to require that the trajectory on such a
limit set crosses the surface of section.

To be more definite consider a topologically mixing and attracting invariant set which
contains a dense set of periodic orbits. A suitable globally well-behaving Poincaré map may
be defined according to a surface of section such that all periodic orbits intersect transversally
with angles bounded from zero. Standard transversality arguments together with the continuity
of the flow of the differential equation prove that the Poincaré map does not change up to a
smooth conjugacy if such a cross section is deformed slightly (see [6]). One should, of
course, keep in mind that without additional topological classification, e.g. along the lines
of [7], it is obvious that different Poincaré maps obeying the transversality condition may
not be equivalent to each other. In fact, if larger deformations or shifts of the cross section
are considered, some part of a trajectory may become tangential to the cross section and,
finally, intersection points become lost (see figure 1). Even without expensive analysis several
qualitative changes are obvious. The recurrence time of successive intersections of a particular
orbit may change discontinuously inducing a corresponding change in local expansion rates
and Lyapunov exponents. A period-n orbit of the former map may become a period-m( 6= n)
orbit of the latter, and a strange variation of the topological entropy may be caused. Hence,
the whole issue deserves a systematic investigation, in particular, if one keeps in mind that in
applications it is often impossible to decide whether one has a well-defined global Poincaré
map at hand.
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2. Transformations in between surfaces of section

To begin with, let us consider a cross section which obeys the above-mentioned transversality
condition for all periodic orbits and denote the corresponding Poincaré map byP0. For
simplicity we neglect transients and focus on an invariant set of the dynamics. Such a set
determines the range of definitionD0 of the map. By a shift or, more generally, by a smooth
deformation of the cross section a whole family of new Poincaré mapsPε with rangesDε is
obtained. Here the subscript measures the degree of deformation, i.e. the shift of the cross
section. Each point ofDε is connected to a point ofD0 via the flow of the differential equation
if we agree upon whether the flow is considered forward or backward in time, between the
different cross sections. From our considerations it is clear that the mapPε is defined with
respect to the domainDε. Hence, even if after some deformation the original cross section
is recovered the mapsP0 andPε need not to be identical since the domainsD0 andDε may
differ. Such features are related to the global topology of the set under consideration, but we
do not intend to dwell on such aspects in what follows. Here we just stress that because of the
continuity of the flow a smooth maph : Dε → D0 is induced. Whetherh is injective, surjective
or both, in some way depends on the just-mentioned topological details of the invariant set.
The dynamics of the mapPε on the setDε translates to the dynamics on the imageh(Dε) ⊆ D0

in such a way that a pointx ∈ h(Dε) is iterated withP0 until it reachesh(Dε) again. If we
introduce the recurrence map

Rε(x) := PNx0 (x) Nx := min{k|P k0 (x) ∈ h(Dε), k > 1} (1)

the following commuting diagram is obtained:

D0
Rε−→ D0

h ↑ h ↑
Dε

Pε−→ Dε

. (2)

The diagram tells us that the Poincaré mapPε is at least as complicated as the recurrence
mapRε on the domainh(Dε) ⊆ D0. In particular, one may study aspects of the variation of
cross section by means of the original mapP0, without referring to the full phase space of the
differential equation. One merely has to consider the recurrence map (1) on a subset of the
full domainD0.

In order to investigate the essential features we first consider a formal model consisting of
the Smale complete tent map. For the recurrence map a simple restriction of the phase space
is introduced:

x ′ = P0(x) = 1− 2|x| D0 = [−1, 1]

h(Dε) = [−1, 1− ε]. (3)

According to our previous discussion the parameterε mimics the change of the cross section
in a fictitious higher-dimensional phase space. The recurrence map (1) is easily computed
(see figure 2). Asε increases a symmetric jump develops and wanders forε ∈ (0, 2

3). This
property is quite easy to understand. By shrinking the range of definition fromD0 = [−1, 1]
to h(Dε) = [−1, 1− ε] there appear phase space pointsx, whose imageP0(x) comes close
to the boundary 1− ε. If the image is located to the left, then according to equation (1)
x is mapped byP0, whereas if the image is located to the right, then it is mapped twice:
Rε(x) = P 2

0 (x). Thus the discontinuity appears at the two preimagesP−1
0 (1 − ε) of the

boundary. In particular, the original period-two orbit{− 1
5,

3
5} of the plain map becomes a

period-one orbit of the recurrence map forε > 2
5. The situation becomes much more intricate

if the critical valueε = 2
3 is crossed. At the critical value the unstable fixed point of the



166 W Just and H Kantz

Figure 2. Recurrence map (1) of the tent map (3) for different values ofε (solid line). For
comparison the plain map is displayed with broken lines.

plain map leaves the domain of definitionh(Dε). It is the first time that an unstable orbit is
erased completely from the dynamics of the recurrence map. Although the recurrence map
becomes continuous at the transition, since bothP0 andRε have a common Markov partition,
the consequences are quite dramatic. Beyond the transition,ε ∈ ( 2

3,
6
5), the recurrence map

develops a countable infinite number of discontinuities. These discontinuities accumulate at
the left preimage of the former fixed point, where the preimage is understood with respect
to the plain mapP0. The explanation of such a structure is straightforward. First of all it
is evident that something dramatic must happen at the mentioned preimage since this point
never returns toh(Dε) upon iteration. Strictly speaking, the recurrence map is not defined
at this point. Furthermore, points very close to the preimage stay, for a long period of time,
close to the former fixed point upon iteration withP0 until they return toh(Dε) because of the
topological mixing property. As a consequence, each interval of initial conditions which leaves
the domainh(Dε) for exactlyN iteration steps gives rise to a new branch of the recurrence map.
Clearly, these branches accumulate at the above-mentioned preimage. The infinite number of
discontinuities cause a blurred structure for the recurrence map. This structure becomes more
pronounced ifε decreases. Atε = 6

5 the second invariant set of the plain mapP0, i.e. the
period-two orbit, leaves the domainh(Dε) and the same mechanism repeats. Summarizing,
each unstable periodic orbit which is not contained with at least one point in the restricted
domainh(Dε) gives rise to a countable infinite number of branches in the recurrence map.
The same mechanism may be expected to apply for more complicated invariant sets. Through
this mechanism the graph of the map acquires a self-similar structure and becomes a fractal
curve with a generalized dimension larger than unity. Such a feature is easily understood since
the countable infinite number of intervals which support the linear pieces of the graph have
widths which decrease exponentially as 2−n. Since the set of numbers{2−n|n ∈ N} ⊂ [0, 1]
gives rise to a box-counting dimension of one, the total dimension of the graph is two, once
the first periodic orbit loses its last intersection point.

Within the present model the recurrence time increases with decreasingε. Hence, the
Lyapunov exponent of the recurrence map increases, since phase space points may be mapped
with the original tent map several times. The new exponent may be obtained by simple
arguments. As in the case of the plain tent map the invariant density of the recurrence map
is uniform as computed straightforwardly from the invariance condition of the corresponding
measureµ(A) = µ(R−1

ε (A)). A typical orbit of lengthN of the plain mapP0, contributes
a termN ln 2 to the cumulative expansion rate. The same contribution is obtained for the
recurrence map, but the length of the sequence is reduced toN(1− ε/2) since the orbit visits
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the restricted domainh(Dε) with frequency 1− ε/2 only. Therefore, the Lyapunov exponent
of the recurrence map reads ln 2/(1− ε/2). According to Pesin’s identity [8] the increase of
the Lyapunov exponent is accompanied by an increase of the Kolmogorov–Sinai entropy. A
similar behaviour might be expected for the topological entropy, in particular, since high-period
orbits of the plain map become low-period orbits of the recurrence map. However, no closed
analytical expression seems to be available. At the critical valueε = 2

3 the topological entropy
is simple to calculate sinceRε admits the Markov partitionI1 = [−1,− 1

3], I2 = [− 1
3, 0],

I3 = [0, 1
3] with possible transitions between all the sets (see figure 2). Hence the transition

matrix reads

A =
( 1 1 1

1 1 1
1 1 1

)
(4)

and its largest eigenvalue yields for the topological entropyhtop(ε = 2
3) = ln 3. On the other

hand, a divergence of the topological entropy beyondε = 2
3 is expected since the infinite

number of branches in the recurrence map may induce an infinite number of fixed points or
orbits of low period. To be more definite consider particular periodic orbits of the tent mapP0

which are injected close to the fixed point, stay a certain number of timesm in the right-hand
interval x > 0, and return for one time step to the left branchx < 0. It is an easy task to
calculate analytically the orbit points, e.g. from its symbolic dynamics−++ · · ·m-times· · ·+.
For our argument we just need that the trajectory of such an orbit comes very close to the fixed
point, in particular in the limit of largem. Put differently, for increasingm only a finite number
of orbit points stay outside a neighbourhood of the fixed point. Therefore, each of these orbits
generates a periodic orbit of the recurrence map for2

3 < ε(< 4
3) and the corresponding periods

remain finite in the limitm → ∞. In summary,Rε admits a countable infinite number of
periodic orbits of finite period, a divergence of the topological entropy is expected to occur for
ε > 2

3, and thus the topological entropy develops a jump of infinite height. Last but not least,
we mention that even for the highly discontinuous recurrence map the well known inequality
between topological and Kolmogorov–Sinai entropy seems to stay valid.

3. Poincaŕe maps of the R̈ossler system

The features developed so far on our simple toy model survive in more realistic cases. In
particular, it is obvious that any invariant set which is not contained in the cross section causes
singularities of the map provided its stable manifold intersects the cross section. In fact, the
most prominent, albeit trivial, example for this mechanism is realized by the Lorenz map
(see [5]). To illustrate the just-developed nontrivial aspect we resort to numerical simulations
of the R̈ossler system [9]

ẋ = −y − z
ẏ = x + ay

ż = b + xz− cz
(5)

for some standard parameter valuesa = 0.15, b = 0.2, c = 10. The flow is almost two-
dimensional with a numerically unresolvable fractal structure. We restrict the discussion to
maps in surfaces of section defined byx = x0 = const, with intersections from positive to
negative values. The first return map of they variable at the intersections,yn+1 = fx0(yn), is
well defined here for all these surfaces of section. In particular, it is a smooth, one humped
map forx0 = 0. The graph offx0 changes smoothly for decreasingx0, until at x0 ≈ −4.3,
parts of the chaotic attractor touch the surface tangentially for the first time. This introduces
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Figure 3. The first return mapsyn+1 = fx0(yn) encoded in greyscale as a function ofx0. The
occurrence of the discontinuities is evident as white scars.

Figure 4. The number of intersectionsnx0 of a finite R̈ossler trajectory with the surface of section
as a function of its positionx0 (broken curve) and the derivative dnx0/dx0 (solid curve). The insets
show graphs of the Poincaré maps at selected values.

the first discontinuity in the map, through the fact that a whole family of long periodic orbits
loses one point of intersection. Atx0 ≈ −6.6 andx0 ≈ −10.5 additional discontinuities are
introduced (see figure 3). Atx0 = 14, as shown by the inset in figure 4, the graph already
possesses two families of infinitely many discontinuities, in agreement with the considerations
of section 2.

In addition, we have calculated the mean recurrence frequency for the Poincaré maps.
For that purpose a fixed finite part of a typical trajectory was considered and the number of
intersectionsnx0 with the cross sectionx = x0 was computed. Figure 4 shows the result
together with its derivative dnx0/dx0. The latter coincides up to some rescaling with the
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Figure 5. The return maps of the INO-laser data for different
cross sections: (a)–(f ) increasing shiftε of the cross section.
The maps in (c)–(e) have two fixed points and in (f ) potentially
infinitely many (see figure 2).

invariant density of the mapfx0=0, i.e. nx0 yields the integrated invariant measure. Such
a feature is easily understood taking the considerations from section 2 into account. The
recurrence frequency is just the probability that a typical orbit stays within the domainh(Dx0)

upon the iteration with the original mapP0, i.e.nx0 ∼ µ(h(Dx0)). In our case the regionh(Dε)

turns out to be an interval where just one of the endpoints depends linearly onx0.
For sufficiently smallx0, the graph of the Poincaré map itself (see the insets in figure 4)

becomes a self-similar fractal object. The function shown forx0 = −14 has a box-counting
dimension ofdBox ≈ 1.8. The arguments of section 2 suggest a value of two, however, loga-
rithmic corrections are expected to occur which reduce the numerically obtained value on finite
scales. Despite all these structures, the average return time〈T 〉 ∼ nx0 increases monotonously
with decreasingx0. As it is well known [6], the Lyapunov exponents of the Poincaré maps are
related to those of the flow via the the relationλmap= λflow〈T 〉, and also the Kolmogorov–Sinai
entropy thus increases monotonously, if we assume the validity of Pesin’s identity.

4. Experimental data

Finally, let us demonstrate that the same effects are relevant for experimentally obtained
Poincaŕe maps. The underlying data are output intensities of a CO2 laser system operating
at the INO in Firenze [10]. The attractor dimension is again close to two, so that the first
return map is essentially one-dimensional (see [11] for details). The fine scale structure which
appears when the cross section is shifted and a larger number of discontinuities is introduced is
naturally wiped out by measurement noise. Nevertheless, as shown in the sequence of plots in
figure 5, when shifting the surface of section, the onset of this scenario can be well observed.
For a better comparison of the different Poincaré maps the intersection points were always
lifted back to the initial surface of section. Hence, parts of the different graphs are identical,
their supports shrink when shifting the surface out of the initial position, and parts of the graph
are replaced by higher iterates (see equation (1)).

If visual inspection of the data is possible, a reasonable surface of section should be located
such that it intersects the shortest periodic orbit exactly once, and does not miss any orbits of
higher period. In practice, this requires one to maximize the number of intersection points
derived from the finite experimental data set, under the constraint that they are not artificially
increased by a multiple cut of the attractor.
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5. Conclusion

We have investigated the influence of the particular cross section on the structure of the resulting
Poincaŕe map. Our analysis revealed that different maps associated with different cross sections
are related on some sophisticated level and that strange variations of the Poincaré maps are
induced by changing the cross section. In particular, the map may develop discontinuities
if some part of the trajectory does not cross the section transversally and a countable infinite
number of jumps is generated if some invariant set, such as an unstable periodic orbit, is missed
completely.

We have developed these features on a simple analytical model, on numerical simulations
of the R̈ossler model, and on actual experimental data from a laser experiment. As a recipe
for the construction of Poincaré maps our analysis indicates that suitable cross section should
maximize the number of intersections and that discontinuities in the resulting map should be
avoided.

In view of recent suggestions to search for periodic orbits as a signature of determinism
in time series data from field measurements [12], our findings suggest investing effort in the
optimization of the Poincaré surface of section, since an unsuitable surface can introduce many,
in the extreme case infinitely many, fixed points, such that the identification of the fixed points
in the presence of noise can become impossible. In particular, Poincaré maps represented by
interspike intervals can be unsuitable, if too many small events are ignored [11].

The different Poincaré maps associated with different cross sections are, in general, not
conjugated to each other. They are, however, related by the recurrence map as exemplified by
our analytical model. As a consequence different quantifiers, such as, for example, Lyapunov
exponents, are related to each other if one takes the recurrence time into account.

Our analysis was confined to systems with quasi one-dimensional Poincaré maps for
simplicity. We expect that the features developed here persist in higher-dimensional cases
although it would be more difficult to detect the analytical structure in these higher-dimensional
Poincaŕe maps explicitly.
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